Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 11: 1356010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725831

RESUMO

Hutchinson-Gilford Progeria Syndrome (HGPS) is an ultra-rare genetic premature aging disease that is historically fatal in teenage years, secondary to severe accelerated atherosclerosis. The only approved treatment is the farnesyltransferase inhibitor lonafarnib, which improves vascular structure and function, extending average untreated lifespan of 14.5 years by 4.3 years (30%). With this longer lifespan, calcific aortic stenosis (AS) was identified as an emerging critical risk factor for cardiac death in older patients. Intervention to relieve critical AS has the potential for immediate improvement in healthspan and lifespan. However, HGPS patient-device size mismatch, pervasive peripheral arterial disease, skin and bone abnormalities, and lifelong failure to thrive present unique challenges to intervention. An international group of experts in HGPS, pediatric and adult cardiology, cardiac surgery, and pediatric critical care convened to identify strategies for successful treatment. Candidate procedures were evaluated by in-depth examination of 4 cases that typify HGPS clinical pathology. Modified transcatheter aortic valve replacement (TAVR) and left ventricular Apico-Aortic Conduit (AAC) placement were deemed high risk but viable options. Two cases received TAVR and 2 received AAC post-summit. Three were successful and 1 patient died perioperatively due to cardiovascular disease severity, highlighting the importance of intervention timing and comparative risk stratification. These breakthrough interventions for treating critical aortic stenosis in HGPS patients could rewrite the current clinical perspective on disease course by greatly improving late-stage quality of life and increasing lifespan. Expanding worldwide medical and surgical competency for this ultra-rare disease through expert information-sharing could have high impact on treatment success.

2.
Eur J Cardiothorac Surg ; 65(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38603631

RESUMO

When neither surgical valve replacement nor transcatheter aortic valve implantation is possible, performing an apico-aortic conduit remains a therapeutic option. This procedure has become rare and the rigid angled apical connectors usually used to facilitate ventricular anastomosis are no longer commercially available. We described the technique that we performed on a 60-year-old patient with readily available material.


Assuntos
Valva Aórtica , Humanos , Pessoa de Meia-Idade , Valva Aórtica/cirurgia , Masculino , Aorta/cirurgia , Estenose da Valva Aórtica/cirurgia , Implante de Prótese Vascular/métodos , Implante de Prótese Vascular/instrumentação
3.
J Cell Sci ; 137(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38032054

RESUMO

The homologous P-type copper-ATPases (Cu-ATPases) ATP7A and ATP7B are the key regulators of copper homeostasis in mammalian cells. In polarized epithelia, upon copper treatment, ATP7A and ATP7B traffic from the trans-Golgi network (TGN) to basolateral and apical membranes, respectively. We characterized the sorting pathways of Cu-ATPases between TGN and the plasma membrane and identified the machinery involved. ATP7A and ATP7B reside on distinct domains of TGN in limiting copper conditions, and in high copper, ATP7A traffics to basolateral membrane, whereas ATP7B traverses common recycling, apical sorting and apical recycling endosomes en route to apical membrane. Mass spectrometry identified regulatory partners of ATP7A and ATP7B that include the adaptor protein-1 complex. Upon knocking out pan-AP-1, sorting of both Cu-ATPases is disrupted. ATP7A loses its trafficking polarity and localizes on both apical and basolateral surfaces in high copper. By contrast, ATP7B loses TGN retention but retained its trafficking polarity to the apical domain, which became copper independent. Using isoform-specific knockouts, we found that the AP-1A complex provides directionality and TGN retention for both Cu-ATPases, whereas the AP-1B complex governs copper-independent trafficking of ATP7B solely. Trafficking phenotypes of Wilson disease-causing ATP7B mutants that disrupts putative ATP7B-AP1 interaction further substantiates the role of AP-1 in apical sorting of ATP7B.


Assuntos
Cobre , Degeneração Hepatolenticular , Animais , Humanos , Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Degeneração Hepatolenticular/genética , Mamíferos/metabolismo , Fragmentos de Peptídeos/metabolismo , Fator de Transcrição AP-1/metabolismo
4.
Cells ; 12(14)2023 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-37508480

RESUMO

The cytoskeleton is a master organizer of the cellular cortex and membrane trafficking and therefore plays a crucial role in apico-basal polarity. Septins form a family of GTPases that assemble into non-polar filaments, which bind to membranes and recruit cytoskeletal elements such as microtubules and actin using their polybasic (PB) domains, to perform their broad biological functions. Nevertheless, the role of septins and the significance of their membrane-binding ability in apico-basal polarity remains under-investigated. Here, using 3D cultures, we demonstrated that septin 9 localizes to the basolateral membrane (BM). Its depletion induces an inverted polarity phenotype, decreasing ß-catenin at BM and increasing transforming growth factor (TGFß) and Epithelial-Mesenchymal Transition (EMT) markers. Similar effects were observed after deleting its two PB domains. The mutant became cytoplasmic and apical. The cysts with an inverted polarity phenotype displayed an invasive phenotype, with src and cortactin accumulating at the peripheral membrane. The inhibition of TGFß-receptor and RhoA rescued the polarized phenotype, although the cysts from overexpressed septin 9 overgrew and presented a filled lumen. Both phenotypes corresponded to tumor features. This suggests that septin 9 expression, along with its assembly through the two PB domains, is essential for establishing and maintaining apico-basal polarity against tumor development.


Assuntos
Cistos , Septinas , Humanos , Membrana Celular/metabolismo , Cistos/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Septinas/metabolismo , Animais , Cães
5.
J Endod ; 49(9): 1207-1215, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37468061

RESUMO

The loss of periodontal tissue support and vertical buccal bone loss in apico-marginal defects can often be mistaken for features indicative of vertical root fractures and this study reports thirteen cases with persistent symptomatic apical periodontitis, apico-marginal defects, and large periapical lesions that were managed with endodontic microsurgery in conjunction with bone grafts and barrier placements with a follow-up period of up to 9 years. At the recall sessions, all cases were asymptomatic with radiographical success with only 2 cases exhibiting residual apical radiolucency, but with evident reduction in the lesion size, indicative of healing. This study highlights the potential of utilizing endodontic microsurgery combined with guided tissue regeneration that proved effective in stimulating the regeneration of periodontal tissue in cases of apico-marginal defects that can lead to favourable long-term outcomes.


Assuntos
Microcirurgia , Periodontite Periapical , Humanos , Regeneração Tecidual Guiada Periodontal , Periodontite Periapical/diagnóstico por imagem , Periodontite Periapical/cirurgia , Cicatrização , Periodonto
6.
Curr Top Dev Biol ; 154: 131-167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37100516

RESUMO

The barrier function of epithelia is one of the cornerstones of the body plan organization of metazoans. It relies on the polarity of epithelial cells which organizes along the apico-basal axis the mechanical properties, signaling as well as transport. This barrier function is however constantly challenged by the fast turnover of epithelia occurring during morphogenesis or adult tissue homeostasis. Yet, the sealing property of the tissue can be maintained thanks to cell extrusion: a series of remodeling steps involving the dying cell and its neighbors leading to seamless cell expulsion. Alternatively, the tissue architecture can also be challenged by local damages or the emergence of mutant cells that may alter its organization. This includes mutants of the polarity complexes which can generate neoplastic overgrowths or be eliminated by cell competition when surrounded by wild type cells. In this review, we will provide an overview of the regulation of cell extrusion in various tissues focusing on the relationship between cell polarity, cell organization and the direction of cell expulsion. We will then describe how local perturbations of polarity can also trigger cell elimination either by apoptosis or by cell exclusion, focusing specifically on how polarity defects can be directly causal to cell elimination. Overall, we propose a general framework connecting the influence of polarity on cell extrusion and its contribution to aberrant cell elimination.


Assuntos
Polaridade Celular , Células Epiteliais , Epitélio/metabolismo , Células Epiteliais/metabolismo , Transdução de Sinais
7.
Development ; 149(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36264257

RESUMO

Apico-basolateral polarization is essential for epithelial cells to function as selective barriers and transporters, and to provide mechanical resilience to organs. Epithelial polarity is established locally, within individual cells to establish distinct apical, junctional and basolateral domains, and globally, within a tissue where cells coordinately orient their apico-basolateral axes. Using live imaging of endogenously tagged proteins and tissue-specific protein depletion in the Caenorhabditiselegans embryonic intestine, we found that local and global polarity establishment are temporally and genetically separable. Local polarity is initiated prior to global polarity and is robust to perturbation. PAR-3 is required for global polarization across the intestine but local polarity can arise in its absence, as small groups of cells eventually established polarized domains in PAR-3-depleted intestines in a HMR-1 (E-cadherin)-dependent manner. Despite the role of PAR-3 in localizing PKC-3 to the apical surface, we additionally found that PAR-3 and PKC-3/aPKC have distinct roles in the establishment and maintenance of local and global polarity. Taken together, our results indicate that different mechanisms are required for local and global polarity establishment in vivo.


Assuntos
Polaridade Celular , Células Epiteliais , Células Epiteliais/metabolismo , Junções Intercelulares , Mucosa Intestinal , Intestinos , Epitélio
8.
Cancer Sci ; 113(11): 3657-3663, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36047965

RESUMO

Apico-basal polarity is a fundamental property of the epithelium that functions as a barrier, holds cells together, and determines the directions of absorption and secretion. Apico-basal polarity is regulated by extracellular matrix-integrin binding and downstream signaling pathways, including focal adhesion kinase, rouse-sarcoma oncogene (SRC), and RHO/RHO-associated kinase (ROCK). Loss of epithelial cell polarity plays a critical role in the progression of cancer cells. However, in differentiated carcinomas, polarity is not completely lost but dysregulated. Recent progress with a three-dimensional culture of primary cancer cells allowed for studies of the mechanism underlying the abnormality of polarity in differentiated cancers, including flexible switching of polarity status in response to the microenvironment. Invasive micropapillary carcinoma (MPC) is one of the histopathological phenotypes of adenocarcinoma, which is characterized by inverted polarity. Aberrant activation of RHO-ROCK signaling plays a critical role in the MPC phenotype. Establishing in vitro models will contribute to future drug targeting of the abnormal polarity status in cancer.


Assuntos
Adenocarcinoma , Carcinoma , Humanos , Polaridade Celular/fisiologia , Epitélio/metabolismo , Células Epiteliais/metabolismo , Comunicação Celular , Quinases Associadas a rho/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Carcinoma/metabolismo , Microambiente Tumoral
9.
Elife ; 112022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36083801

RESUMO

The oncogenic G-protein-coupled receptor (GPCR) Smoothened (SMO) is a key transducer of the hedgehog (HH) morphogen, which plays an essential role in the patterning of epithelial structures. Here, we examine how HH controls SMO subcellular localization and activity in a polarized epithelium using the Drosophila wing imaginal disc as a model. We provide evidence that HH promotes the stabilization of SMO by switching its fate after endocytosis toward recycling. This effect involves the sequential and additive action of protein kinase A, casein kinase I, and the Fused (FU) kinase. Moreover, in the presence of very high levels of HH, the second effect of FU leads to the local enrichment of SMO in the most basal domain of the cell membrane. Together, these results link the morphogenetic effects of HH to the apico-basal distribution of SMO and provide a novel mechanism for the regulation of a GPCR.


Assuntos
Proteínas de Drosophila , Proteínas Hedgehog , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Hedgehog/metabolismo , Fosforilação , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
10.
Front Cell Dev Biol ; 10: 948013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859901

RESUMO

Membrane polarity, defined as the asymmetric distribution of lipids and proteins in the plasma membrane, is a critical prerequisite for the development of multicellular tissues, such as epithelia and endothelia. Membrane polarity is regulated by polarized trafficking of membrane components to specific membrane domains and requires the presence of intramembrane diffusion barriers that prevent the intermixing of asymmetrically distributed membrane components. This intramembrane diffusion barrier is localized at the tight junctions (TJs) in these cells. Both the formation of cell-cell junctions and the polarized traffic of membrane proteins and lipids are regulated by Rho and Rab family small GTPases. In this review article, we will summarize the recent developments in the regulation of apico-basal membrane polarity by polarized membrane traffic and the formation of the intramembrane diffusion barrier in epithelial cells with a particular focus on the role of Rho and Rab family small GTPases.

11.
J Mol Cell Cardiol ; 166: 127-136, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248551

RESUMO

Efficient pumping of the healthy left ventricle (LV) requires heterogeneities in mechanical function of individual cardiomyocytes (CM). Deformation of sub-endocardial (Endo) tissue is greater than that of sub-epicardial (Epi) regions. Papillary muscles (PM), often considered to be part of Endo tissue, show lower beat-by-beat length variation than Epi (or Endo) regions, even though they contribute to the shift in atrio-ventricular valve plane, which is essential for LV pump function. Thus far, no comparative assessment of CM mechanics for PM and LV free wall has been published. Here, we investigate contractility and cytosolic calcium concentration ([Ca2+]c) transients in rabbit single CM, freshly isolated from PM, Endo and Epi regions of the LV (free wall tissue was further subdivided into near-basal [Base], equatorial [Centre], and near-apical [Apex] parts). Functional parameters were measured in the absence of external mechanical loads (non-loaded), or during afterloaded (auxotonic) CM contractions, initiated from different levels of preload (diastolic axial stretch), using the carbon fibre technique. We note significant differences in time-course and amplitudes of sarcomere shortening between PM, Endo and Epi CM. In non-loaded CM, sarcomere shortening between regions compares as follows: Endo > Epi and Endo > PM. During afterloaded contractions, the slope of auxotonic tension-length relation and the Frank-Starling gain index (preload-dependent increase in tension and shortening) follow the sequence of Endo > Epi > PM. In terms of apico-basal gradients, time-to-peak sarcomere shortening was greater in Apex compared to Centre and Base in non-loaded CM only. Thus, CM from PM show the least pronounced preload-dependent activation of force across the LV regions assessed, while CM from Endo regions show the strongest response. This is in keeping with prior in situ observations on the smaller extent of PM shortening and their thus lower functional requirement for sensitivity to preload, compared to LV free wall. The here identified regional differences in cellular Frank-Starling responses illustrate the extent to which CM mechanical responses appear to be in keeping with in situ differences in mechanical demand.


Assuntos
Ventrículos do Coração , Miócitos Cardíacos , Animais , Endocárdio/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Músculos Papilares , Coelhos
12.
Development ; 148(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408064

RESUMO

Understanding the cellular organization of tissues is key to developmental biology. In order to deal with this complex problem, researchers have taken advantage of reductionist approaches to reveal fundamental morphogenetic mechanisms and quantitative laws. For epithelia, their two-dimensional representation as polygonal tessellations has proved successful for understanding tissue organization. Yet, epithelial tissues bend and fold to shape organs in three dimensions. In this context, epithelial cells are too often simplified as prismatic blocks with a limited plasticity. However, there is increasing evidence that a realistic approach, even from a reductionist perspective, must include apico-basal intercalations (i.e. scutoidal cell shapes) for explaining epithelial organization convincingly. Here, we present an historical perspective about the tissue organization problem. Specifically, we analyze past and recent breakthroughs, and discuss how and why simplified, but realistic, in silico models require scutoidal features to address key morphogenetic events.


Assuntos
Epitélio/anatomia & histologia , Morfogênese , Animais , Fenômenos Biomecânicos , Fenômenos Biofísicos , Forma Celular , Humanos , Modelos Biológicos
13.
J Biomech ; 101: 109645, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32014305

RESUMO

The pericardium affects cardiac motion by limiting epicardial displacement normal to the surface. In computational studies, it is important for the model to replicate realistic motion, as this affects the physiological fidelity of the model. Previous computational studies showed that accounting for the effect of the pericardium allows for a more realistic motion simulation. In this study, we describe the mechanism through which the pericardium causes improved cardiac motion. We simulated electrical activation and contraction of the ventricles on a four-chamber heart in the presence and absence of the effect of the pericardium. We simulated the mechanical constraints imposed by the pericardium by applying normal Robin boundary conditions on the ventricular epicardium. We defined a regional scaling of normal springs stiffness based on image-derived motion from CT images. The presence of the pericardium reduced the error between simulated and image-derived end-systolic configurations from 12.8±4.1 mm to 5.7±2.5 mm. First, the pericardium prevents the ventricles from spherising during isovolumic contraction, reducing the outward motion of the free walls normal to the surface and the upwards motion of the apex. Second, by restricting the inward motion of the free and apical walls of the ventricles the pericardium increases atrioventricular plane displacement by four folds during ejection. Our results provide a mechanistic explanation of the importance of the pericardium in physiological simulations of electromechanical cardiac function.


Assuntos
Modelos Cardiovasculares , Pericárdio/fisiologia , Sístole/fisiologia , Função Ventricular , Humanos , Contração Miocárdica
14.
Eur Heart J Case Rep ; 4(6): 1-6, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33629010

RESUMO

BACKGROUND: Apico-aortic conduit (AAC) which connects the left ventricular (LV) apex directly to the descending aorta through a valved conduit, is an alternative to surgical aortic valve replacement (AVR) for patients with aortic stenosis (AS) who are inoperable or high risk for surgical AVR and are not suitable candidates for transcatheter aortic valve implantation (TAVI). CASE SUMMARY: An 84-year-old man with severe AS underwent an AAC combined with coronary artery bypass grafting 8 years earlier. A saphenous vein graft was anastomosed from the conduit to the left anterior descending artery. He had developed haemolytic anaemia requiring frequent blood transfusions. The stenosis at the anastomosis of the left ventricle and the conduit might be the cause of a turbulent flow and a shear stress which led to mechanical haemolysis. We expected that dilatation of native aortic valve would reduce the blood flow at the anastomosis site and thereby improve haemolytic anaemia. Since balloon aortic valvuloplasty improved haemolytic anaemia without exacerbation of myocardial ischaemia, transsubclavian TAVI was performed. After the TAVI, significant reductions in the pressure gradient between the left ventricle and the ascending aorta and that between the left ventricle and the conduit were achieved, and the patient remained clinically stable without the recurrence of haemolytic anaemia. DISCUSSION: This is the first report regarding mechanical haemolytic anaemia after AAC which might result from a turbulence and a shear stress by the stenosis of the anastomosis of the LV apex and the conduit. A careful monitoring for conduit dysfunction should be made after AAC.

15.
Mech Dev ; 161: 103595, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31887432

RESUMO

Claudins are a family of proteins which are the most important components of the tight junctions. The location of Claudins on the renal tubule epithelial determines its paracellular transport characteristics, but whether Claudins have other functions in kidneys remains still unclear. Here, we showed that the transcripts encoding two Claudin family proteins, claudin-7b (cldn-7b) and claudin-h (cldn-h), were expressed in the transporting cells in the zebrafish pronephros. By knocking down of cldn-7b and cldn-h in zebrafish, we showed that these claudins morphants exhibited cystic kidneys accompanied with body curvature. Further analysis showed that down regulation of cldn-7b or cldn-h led to multiple defects in apico-basolateral polarity, cilia morphology and ciliary function in kidney. Moreover, the ciliary defect was confirmed by depletion of Cldn-7b or Cldn-h using CRISPR/Cas9 system. We also showed that both cldn-7b and cldn-h were genetically interacted with a well-known ciliary gene, arl13b. Deletion of arl13b led to curly cilia in the pronephros that phenocopied with cldn-7b and cldn-h morphants. Taken together, our data suggested that the tight junction protein, Cldn-7b and Cldn-h, regulate kidney development and function by affecting cilia morphology.


Assuntos
Cílios/metabolismo , Claudinas/metabolismo , Rim/metabolismo , Organogênese/fisiologia , Peixe-Zebra/metabolismo , Animais , Pronefro/metabolismo , Junções Íntimas/metabolismo
16.
Curr Opin Cell Biol ; 62: 78-85, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31731147

RESUMO

Understanding the development of apicobasal polarity (ABP) is a long-standing problem in biology. The molecular components involved in the development and maintenance of APB have been largely identified and are known to have ubiquitous roles across organisms. Our knowledge of the functional consequences of ABP establishment and maintenance is far less comprehensive. Recent studies using novel experimental approaches and cellular models have revealed a growing link between ABP and the genetic program of cell lineage. This mini-review describes some of the most recent advances in this new field, highlighting examples from Caenorhabditis elegans and mouse embryos, human pluripotent stem cells, and epithelial cells. We also speculate on the most interesting and challenging avenues that can be explored.


Assuntos
Polaridade Celular/fisiologia , Células Epiteliais/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos
17.
Annu Rev Cell Dev Biol ; 35: 285-308, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31461314

RESUMO

Polarization along an apico-basolateral axis is a hallmark of epithelial cells and is essential for their selective barrier and transporter functions, as well as for their ability to provide mechanical resiliency to organs. Loss of polarity along this axis perturbs development and is associated with a wide number of diseases. We describe three steps involved in polarization: symmetry breaking, polarity establishment, and polarity maintenance. While the proteins involved in these processes are highly conserved among epithelial tissues and species, the execution of these steps varies widely and is context dependent. We review both theoretical principles underlying these steps and recent work demonstrating how apico-basolateral polarity is established in vivo in different tissues, highlighting how developmental and physiological contexts play major roles in the execution of the epithelial polarity program.


Assuntos
Membrana Basal/metabolismo , Polaridade Celular , Células Epiteliais/citologia , Epitélio/metabolismo , Animais , Membrana Basal/citologia , Comunicação Celular , Matriz Extracelular/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Transdução de Sinais
18.
Biol Open ; 8(4)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015218

RESUMO

The vertebrate retina is a complex tissue built from multiple neuronal cell types, which develop from a pseudostratified neuroepithelium. These cells are arranged into a highly organized and stereotypic pattern formed by nuclear and plexiform layers. The process of lamination as well as the maturation and differentiation of photoreceptor cells rely on the establishment and maintenance of apico-basal cell polarity and formation of adhesive junctions. Defects in any of these processes can result in impaired vision and are causally related to a variety of human diseases leading to blindness. While the importance of apical polarity regulators in retinal stratification and disease is well established, little is known about the function of basal regulators in retinal development. Here, we analyzed the role of Lgl2, a basolateral polarity factor, in the zebrafish retina. Lgl2 is upregulated in photoreceptor cells and in the retinal pigment epithelium by 72 h post fertilization. In both cell types, Lgl2 is localized basolaterally. Loss of zygotic Lgl2 does not interfere with retinal lamination or photoreceptor cell polarity or maturation. However, knockdown of both maternal and zygotic Lgl2 leads to impaired cell adhesion. As a consequence, severe layering defects occur in the distal retina, manifested by a breakdown of the outer plexiform layer and the outer limiting membrane. These results define zebrafish Lgl2 as an important regulator of retinal lamination, which, given the high degree of evolutionary conservation, may be preserved in other vertebrates, including human.

19.
Cell Adh Migr ; 12(5): 489-502, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29961393

RESUMO

During development, neuroepithelial progenitors acquire apico-basal polarity and adhere to one another via apically located tight and adherens junction complexes. This polarized neuroepithelium must continue to integrate cells arising through cell divisions and intercalation, and allow for cell movements, at the same time as undergoing morphogenesis. Cell proliferation, migration and intercalation all occur in the morphing embryonic eye. To understand how eye development might depend on dynamic epithelial adhesion, we investigated the function of a known regulator of junctional plasticity, Tumour necrosis factor receptor-associated factor 4 (Traf4). traf4a mRNA is expressed in the developing eye vesicle over the period of optic cup morphogenesis, and Traf4a loss leads to disrupted evagination and elongation of the eye vesicles, and aberrant organization and apico-basal polarity of the eye epithelium. We propose a model whereby Traf4a regulates apical junction plasticity in nascent eye epithelium, allowing for its polarization and morphogenesis. Symbols and Abbreviations: AB: apico-basal; aPKC: atypical protein kinase-C; CRISPR: clustered regularly-interspaced short palindromic repeats; GFP: green fluorescent protein; hpf: hours post-fertilization; MO: antisense morpholino oligonucleotide; pHH3: phospho histone H3; ss: somite stage; Traf4: Tumour necrosis factor receptor-associated factor 4; ZO-1: zona occludens-1.

20.
J Thorac Cardiovasc Surg ; 156(3): 1005-1012, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29759739

RESUMO

OBJECTIVE: To investigate and describe the distribution of aortic and cerebral blood flow (CBF) in patients with severe valvular aortic stenosis (AS) before and after aortic valve bypass (AVB) surgery. METHODS: We enrolled 10 consecutive patients who underwent AVB surgery for severe AS. Cardiovascular magnetic resonance imaging (CMR) and brain magnetic resonance imaging were performed as baseline before surgery and twice after surgery. Quantitative flow measurements were obtained using 1.5-T magnetic resonance imaging (MRI) scanner phase-contrast images of the ascending aorta, descending thoracic aorta (3 cm proximally and distally from the conduit-to-aorta anastomosis), and ventricular outflow portion of the conduit. The evaluation of CBF was performed using 3.0-T MRI scanner arterial spin labeling (ASL) through sequences acquired at the gray matter, dorsal default-mode network, and sensorimotor levels. RESULTS: Conduit flow, expressed as the percentage of total antegrade flow through the conduit, was 63.5 ± 8% and 67.8 ± 7% on early and mid-term postoperative CMR, respectively (P < .05). Retrograde perfusion from the level of the conduit insertion in the descending thoracic aorta toward the aortic arch accounted for 6.9% of total cardiac output and 11% of total conduit flow. We did not observe any significant reduction in left ventricular stroke volume at postoperative evaluation compared with preoperative evaluation (P = .435). No differences were observed between preoperative and postoperative CBF at the gray matter, dorsal default-mode network, and sensorimotor levels (P = .394). CONCLUSIONS: After AVB surgery in patients with severe AS, cardiac output is split between the native left ventricular outflow tract and the apico-aortic bypass, with two-thirds of the total antegrade flow passing through the latter and one-third passing through the former. In our experience, CBF assessment confirms that the flow redistribution does not jeopardize cerebral blood supply.


Assuntos
Aorta/fisiopatologia , Estenose da Valva Aórtica/cirurgia , Encéfalo/irrigação sanguínea , Procedimentos Cirúrgicos Cardíacos/métodos , Imageamento por Ressonância Magnética , Idoso , Idoso de 80 Anos ou mais , Aorta/diagnóstico por imagem , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/fisiopatologia , Encéfalo/diagnóstico por imagem , Débito Cardíaco , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Índice de Gravidade de Doença , Método Simples-Cego , Volume Sistólico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...